1. About this Book
  2. How to Read & Terminologies
  3. Introducing Chapters
  4. Part 1: Intro
  5. 1. Introduction to the Field of Data Engineering
    ❱
    1. 1.1. The History and State of Data Engineering
    2. 1.2. Challenges in Data Engineering
  6. 2. Introduction to Data Engineering Design Patterns (DEDP)
    ❱
    1. 2.1. Understanding Convergent Evolution
  7. 3. Convergent Evolution and its Patterns
    ❱
    1. 3.1. Business Intelligence, Semantic Layer, Modern OLAP, Data Virtualization
    2. 3.2. Materialized Views vs. One Big Table (OBT) vs. dbt tables vs. Traditional OLAP vs. DWA
    3. 3.3. Bash-Script vs. Stored Procedure vs. Traditional ETL Tools vs. Python-Script
    4. 3.4. Data Warehouses vs. Master Data Management vs. Data Lakes vs. Reverse-ETL vs. CDP
    5. 3.5. Schema Evolution vs. Data Contracts vs. NoSQL
    6. 3.6. More to come..
  8. Part 2: Mastering the DEDP
  9. 4. Data Engineering Patterns (DEP)
    ❱
    1. 4.1. Cache
    2. 4.2. Data-Asset Reusability
    3. 4.3. More to come..
  10. 5. Data Engineering Design Patterns (DEDP)
    ❱
    1. 5.1. More to come..
  11. Part 3: Navigating DEDP
  12. Changelog
  13. Feedback
  14. Author & Support
  15. Sponsors
  16. Copyright & Legal Notice
  17. Privacy Policy
  18. Login
  19. Subscription
  20. Sign Up
📖 Data Engineering Design Patterns (DEDP)

Login

Forgot password? / Sign Up

Or sign in with:

Sign in with Google Sign in with GitHub